Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8431, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600135

RESUMO

A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated with increased yield under favorable and drought conditions. In addition, selective sweep analysis was conducted to detect signatures of selection in the winter wheat genome driving the differentiation between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought environment due to very low precipitation prior to heading whereas year 2019 was considered as a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection between LR and MV of which 15 were within proximity of known functional genes controlling flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The study outcomes contribute to utilization of LR in breeding winter wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estações do Ano , Locos de Características Quantitativas , Secas , Turquia , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Genômica
2.
Genes (Basel) ; 15(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254975

RESUMO

The Kazakhstan-Siberia Network for Spring Wheat Improvement (KASIB) was established in 2000, forming a collaboration between breeding and research programs through biannual yield trials. A core set of 142 genotypes from 15 breeding programs was selected, genotyped for 81 DNA functional markers and phenotyped for 10 agronomic traits at three sites in Kazakhstan (Karabalyk, Shortandy and Shagalaly) and one site in Russia (Omsk) in 2020-2022. The study aim was to identify markers demonstrating significant effects on agronomic traits. The average grain yield of individual trials varied from 118 to 569 g/m2. Grain yield was positively associated with the number of days to heading, plant height, number of grains per spike and 1000-kernel weight. Eight DNA markers demonstrated significant effects. The spring-type allele of the Vrn-A1 gene accelerated heading by two days (5.6%) and was present in 80% of the germplasm. The winter allele of the Vrn-A1 gene significantly increased grain yield by 2.7%. The late allele of the earliness marker per se, TaMOT1-D1, delayed development by 1.9% and increased yield by 4.5%. Translocation of 1B.1R was present in 21.8% of the material, which resulted in a 6.2% yield advantage compared to 1B.1B germplasm and a reduction in stem rust severity from 27.6 to 6.6%. The favorable allele of TaGS-D1 increased both kernel weight and yield by 2-3%. Four markers identified in ICARDA germplasm, ISBW2-GY (Kukri_c3243_1065, 3B), ISBW3-BM (TA004946-0577, 1B), ISBW10-SM2 (BS00076246_51, 5A), ISBW11-GY (wsnp_Ex_c12812_20324622, 4A), showed an improved yield in this study of 3-4%. The study recommends simultaneous validation and use of selected markers in KASIB's network.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Sibéria , Cazaquistão , Fenótipo , Biomarcadores , Grão Comestível
3.
Foods ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37761085

RESUMO

The main aim of this study was to investigate the quality and nutritional properties (dietary fiber, phenolic, antioxidant contents, and glycemic index) of breads made from whole wheat flours of colored wheats. White (cultivar Agronomicheskaya 5), red (Element 22), purple (EF 22 and Purple 8), and blue (Blue 10) colored wheats were used in the study. The whole wheat flours of Blue 10 and Purple 8 had higher farinograph stability, lower softening degree, and higher quality numbers indicating that they had better rheological properties. Bread produced from whole wheat flour of blue-colored grain had significantly higher loaf volume and better symmetry, crust color, crumb cell structure, and softness values among others (p < 0.05). The whole wheat bread produced using Element 22 had the highest crust and crumb L* color values, while Purple 8 and EF 22 had the lowest crust and crumb L* color values, suggesting that purple-colored grains have a tendency to make whole wheat bread with darker crust and crumb color. Bread produced from cultivar Blue 10 had the lowest firmness values while Element 22 had the highest firmness values. The highest total phenolic content and antioxidant capacity values were obtained from the whole wheat bread sample from purple-colored wheat (Purple 8). The whole wheat flour of Element 22 had the highest total dietary fiber content among all samples (p < 0.05). The differences between whole wheat bread samples in terms of total dietary fiber and glycemic index were not statistically significant. The results of the present study indicated that colored wheats can be used to produce whole wheat breads with higher nutritional properties and acceptable quality characteristics.

4.
Plants (Basel) ; 12(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375859

RESUMO

Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei's genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance.

5.
Plants (Basel) ; 12(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375926

RESUMO

In this study, 21 synthetic hexaploid wheat samples were analyzed and compared for phenolic content (the Folin-Ciocalteu method), phenolic compositions, and antioxidant activity (DPPH, ABTS, and CUPRAC). The aim of the study was to determine the phenolic content and antioxidant activity of synthetic wheat lines developed from Ae. Tauschii, which has a wide genetic diversity, to be used in breeding programs for developing new varieties with better nutritional properties. Bound, free, and total phenolic contents (TPCs) of wheat samples were determined as 145.38-258.55 mg GAE/100 g wheat, 188.19-369.38 mg GAE/100 g wheat, and 333.58-576.93 mg GAE/100 g wheat, respectively. Phenolic compositions were detected by the HPLC system. Gallic acid was found in the highest concentrations in free fractions, whereas gallic, p-coumaric acid, and chlorogenic acid were generally found in the highest concentrations in bound fractions of the synthetic hexaploid wheat samples. The antioxidant activities (AA%) of the wheat samples were evaluated by the DPPH assay. AA% in the free extracts of the synthetic red wheat samples ranged from 33.0% to 40.5%, and AA% values in the bound extracts of the synthetic hexaploid wheat samples varied between 34.4% and 50.6%. ABTS and CUPRAC analyses were also used to measure antioxidant activities. The ABTS values of the free and bound extracts and total ABTS values of the synthetic wheat samples ranged from 27.31 to 123.18, 61.65 to 263.23, and 93.94 to 308.07 mg TE/100 g, respectively. The corresponding CUPRAC values of the synthetic wheats were between 25.78-160.94, 75.35-308.13, and 107.51-364.79 mg TE/100 g. This study revealed that synthetic hexaploid wheat samples are valuable resources for breeding programs for developing new wheat varieties with higher concentrations and better compositions of health-beneficial phytochemicals. The samples w1 (Ukr.-Od. 1530.94/Ae. squarrosa (629)), w18 (Ukr.-Od. 1530.94/Ae. squarrosa (1027)), and w20 (Ukr.-Od. 1530.94/Ae. squarrosa (392)) can be used as a genetic resource in breeding programs to enhance the nutritional quality of wheat.

6.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297355

RESUMO

Intermediate wheatgrass (IWG; Thinopyrum intermedium), a nutritionally dense and sustainable crop, is a promising novel ingredient in bakery applications. The main aim of this study was to investigate the potential of IWG as a novel ingredient in breadmaking. The second aim was to investigate the characteristics of breads substituted with 15, 30, 45, and 60% IWG flour compared to control bread produced using wheat flour. The gluten content and quality, bread quality, bread staling, yellow pigment, and phenolic and antioxidant properties were determined. Enrichment with IWG flours significantly affected the gluten content and quality and bread characteristics. Increased levels of IWG flour substitution significantly decreased the Zeleny sedimentation and gluten index values and increased the dry and wet gluten contents. The bread yellow pigment content and crumb b* colour value increased with the increasing level of IWG supplementation. IWG addition also had a positive effect on the phenolic and antioxidant properties. Bread with 15% IWG substitution had the highest bread volume (485 mL) and lowest firmness values (654 g-force; g-f) compared to the other breads, including the control (i.e., wheat flour bread). The results indicated that IWG has great potential to be used in bread production as a novel, healthy, and sustainable ingredient.

7.
Plants (Basel) ; 11(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015476

RESUMO

Wheat as a staple food crop is the main source of micro- and macronutrients for most people of the world and is recognized as an attractive crop for biofortification. This study presents a comprehensive investigation of genomic regions governing grain micro- and macroelements concentrations in a panel of 135 diverse wheat accessions through a genome-wide association study. The genetic diversity panel was genotyped using the genotyping-by-sequencing (GBS) method and phenotyped in two environments during 2017−2018. Wide ranges of variation in nutrient element concentrations in grain were detected among the accessions. Based on 33,808 high-quality single nucleotide polymorphisms (SNPs), 2997 marker-element associations (MEAs) with −log10(p-value) > 3.5 were identified, representing all three subgenomes of wheat for 15-grain concentration elements. The highest numbers of MEAs were identified for Mg (499), followed by S (399), P (394), Ni (381), Cd (243), Ca (229), Mn (224), Zn (212), Sr (212), Cu (111), Rb (78), Fe (63), Mo (43), K (32) and Co (19). Further, MEAs associated with multiple elements and referred to as pleiotropic SNPs were identified for Mg, P, Cd, Mn, and Zn on chromosomes 1B, 2B, and 6B. Fifty MEAs were subjected to validation using KASIB multilocational trial at six sites in two years using 39 genotypes. Gene annotation of MEAs identified putative candidate genes that potentially encode different types of proteins related to disease, metal transportation, and metabolism. The MEAs identified in the present study could be potential targets for further validation and may be used in marker-assisted breeding to improve nutrient element concentrations in wheat grain.

8.
Foods ; 11(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36010514

RESUMO

The total phenolic content, phenolic compositions, and antioxidant capacity in the grain of 40 purple wheat genotypes were studied. In this study, purple wheats were investigated in terms of their composition of free and bound phenolic acids and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. The free phenolic content ranged from 164.25 to 271.05 mg GAE/100 g DW and the bound phenolic content was between 182.89-565.62 mg GAE/100 g wheat. The total phenolic content of purple wheat samples ranged from 352.65 to 771.83 mg GAE/100 g wheat. Gallic acid, protocatechuic acid, catechin, 4-hydroxybenzoic acid, syringic acid, ellagic acid, m-coumaric acid, o-coumaric acid, chrysin, caffeic acid, p-coumaric acid, ferulic acid, quercetin, kaempferol, rutin, sinapic acid, and chlorogenic acid were detected by HPLC system. Gallic acid, benzoic acid derivatives, and dominant phenolics, which are frequently found in cereals, were also dominant in purple wheat samples and were found in free fractions. The antioxidant capacity was assessed using the DPPH method. The antioxidant capacity (AA%) in the free phenolic extracts of the purple wheats was between 39.7% and 59.5%, and the AA% values of bound phenolic extract of the purple wheat varied between 42.6% and 62.7%. This study suggested that purple wheat samples have high phenolic compound content as antioxidant potential and therefore consumption of purple wheat-containing food products may provide health benefits.

9.
Front Plant Sci ; 13: 851079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860541

RESUMO

Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.

10.
Nat Commun ; 13(1): 4315, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882860

RESUMO

The fungus Blumeria graminis f. sp. tritici causes wheat powdery mildew disease. Here, we study its spread and evolution by analyzing a global sample of 172 mildew genomes. Our analyses show that B.g. tritici emerged in the Fertile Crescent during wheat domestication. After it spread throughout Eurasia, colonization brought it to America, where it hybridized with unknown grass mildew species. Recent trade brought USA strains to Japan, and European strains to China. In both places, they hybridized with local ancestral strains. Thus, although mildew spreads by wind regionally, our results indicate that humans drove its global spread throughout history and that mildew rapidly evolved through hybridization.


Assuntos
Doenças das Plantas , Triticum , Genômica , Migração Humana , Humanos , Doenças das Plantas/microbiologia , Poaceae , Triticum/genética , Triticum/microbiologia
11.
J Fungi (Basel) ; 8(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628673

RESUMO

Kazakhstan is the fourteenth largest wheat producer in the world. Despite this fact, there has not been a comprehensive survey of wheat root and crown rot. A quantitative survey was conducted for the purpose of establishing the distribution of fungi associated with root and crown rot on wheat (Triticum spp.). During the 2019 growing season, samples were taken from the affected plants' roots and stem bases. A total of 1221 fungal isolates were acquired from 65 sites across the central (Karagandy region), eastern (East Kazakhstan region), and southeastern (Almaty region) parts of the country and identified using morphological and molecular tools. The internal transcribed spacer (ITS), translation elongation factor 1-alpha (EF1-α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequences were successfully used to identify the species of fungal isolates. It was found that Bipolaris sorokiniana (44.80%) and Fusarium acuminatum (20.39%) were the most predominant fungal species isolated, which were present in 86.15 and 66.15% of the fields surveyed, respectively, followed by F. equiseti (10.16%), Curvularia spicifera (7.62%), F. culmorum (4.75%), F. oxysporum (4.10%), F. redolens (2.38%), Rhizoctonia solani AG2-1 (1.06%), Nigrospora oryzae (0.98%), C. inaequalis (0.90%), F. pseudograminearum (0.74%), F. flocciferum (0.74%), Macrophomina phaseolina (0.66%), F. cf. incarnatum (0.33%), Fusarium sp. (0.25%), and F. torulosum (0.16%). A total of 74 isolates representing 16 species were tested via inoculation tests on the susceptible Triticum aestivum cv. Seri 82 and the results revealed that F. culmorum and F. pseudograminearum, B. sorokiniana, Fusarium sp., R. solani, F. redolens, C. spicifera, C. inaequalis, and N. oryzae were virulent, whereas others were non-pathogenic. The findings of this investigation demonstrate the presence of a diverse spectrum of pathogenic fungal species relevant to wheat crown and root rot in Kazakhstan. To the best of our knowledge, this is the first report of F. pseudograminearum, Fusarium sp., C. spicifera, and C. inaequalis as pathogens on wheat in Kazakhstan.

12.
Plants (Basel) ; 11(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35050037

RESUMO

Western Siberia is one of the major spring wheat regions of Russia, cultivating over 7 Mha. The objective of the study was to evaluate the variation of macro- and microelements, and of trace metals in four distinct groups of genetic resources: primary synthetics from CIMMYT (37 entries), primary synthetics from Japan (8), US hard red spring wheat cultivars (14), and material from the Kazakhstan-Siberian Network on Spring Wheat Improvement (KASIB) (74). The experiment was conducted at Omsk State Agrarian University, using a random complete block design with four replicates in 2017 and 2018. Concentrations of 15 elements were included in the analysis: macroelements, Ca, K, Mg, P, and S; microelements, Fe, Cu, Mn, and Zn; toxic trace elements, Cd, Co, Ni; and trace elements, Mo, Rb, and Sr. Protein content was found to be positively correlated with the concentrations of 11 of the elements in one or both years. Multiple regression was used to adjust the concentration of each element, based on significant correlations with agronomic traits and macroelements. All 15 elements were evaluated for their suitability for genetic enhancement, considering phenotypic variation, their share of the genetic component in this variation, as well as the dependence of the element concentration on other traits. Three trace elements (Sr, Mo, and Co) were identified as traits that were relatively easy to enhance through breeding. These were followed by Ca, Cd, Rb, and K. The important biofortification elements Mn and Zn were among the traits that were difficult to enhance genetically. The CIMMYT and Japanese synthetics had significantly higher concentrations of K and Sr, compared to the local check. The Japanese synthetics also had the highest concentrations of Ca, S, Cd, and Mo. The US cultivars had concentrations of Ca as high as the Japanese synthetics, and the highest concentrations of Mg and Fe. KASIB's germplasm had near-average values for most elements. Superior germplasm, with high macro- and microelement concentrations and low trace-element concentrations, was found in all groups of material included.

13.
Plants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616131

RESUMO

Common bunt (caused by Tilletia caries and T. Foetida) is a major wheat disease. It occurs frequently in the USA and Turkey and damages grain yield and quality. Seed treatment with fungicides is an effective method to control this disease. However, using fungicides in organic and low-income fields is forbidden, and planting resistant cultivars are preferred. Due to the highly effective use of fungicides, little effort has been put into breeding resistant genotypes. In addition, the genetic diversity for this trait is low in modern wheat germplasm. Synthetic wheat genotypes were reported as an effective source to increase the diversity in wheat germplasm. Therefore, a set of 25 synthetics that are resistant to the Turkish common bunt race were evaluated against the Nebraska common bunt race. Four genotypes were found to be very resistant to Nebraska's common bunt race. Using differential lines, four isolines carrying genes, Bt10, Bt11, Bt12, and Btp, were found to provide resistance against both Turkish and Nebraska common bunt races. Genotypes carrying any or all of these four genes could be used as a source of resistance in both countries. No correlation was found between common bunt resistance and some agronomic traits, which suggests that common bunt resistance is an independent trait.

14.
Plant Dis ; 105(9): 2299-2305, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33754850

RESUMO

Kazakhstan is one of the biggest wheat producers, however, its wheat production is far below the average international wheat production standard due to biotic and abiotic stressors. Plant-parasitic nematodes are devastating for cereal production systems worldwide. A comprehensive survey was conducted in 2019 to identify plant-parasitic nematodes associated with wheat in different locations of central, eastern, and southeastern Kazakhstan. The results revealed 33 root-lesion and 27 cyst nematode populations from the 77 localities sampled. These two genera occurred in separate or in mixed populations. The root-lesion populations were identified as Pratylenchus neglectus and P. thornei while all cyst nematodes were identified as Heterodera filipjevi. The identification of nematodes was firstly performed based on morphological and morphometric features and confirmed by BLAST and phylogenetic analyses based on the internal transcribed spacer and the D2-D3 expansion located in the 28S gene of ribosomal DNA for CCN and RLN populations, respectively. Pratylenchus neglectus and P. thornei populations from Kazakhstan showed a high similarity with the American, European, and Asian populations. Heterodera filipjevi populations formed a well-supported cluster with the corresponding populations from different countries and showed a slightly intraspecific polymorphism. Kazakhstan populations of H. filipjevi may have multiple introductions in Kazakhstan due to the divergence among them. The results of this study are of great importance for breeding programs and will enable awareness for extension advisors to develop measures to control these nematodes in cereal cropping areas in Kazakhstan.


Assuntos
Triticum , Tylenchoidea , Animais , Grão Comestível , Cazaquistão , Filogenia , Melhoramento Vegetal
15.
G3 (Bethesda) ; 9(12): 4209-4222, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31645419

RESUMO

Exploiting genetically diverse lines to identify genes for improving crop performance is needed to ensure global food security. A genome-wide association study (GWAS) was conducted using 46,268 SNP markers on a diverse panel of 143 hexaploid bread and synthetic wheat to identify potential genes/genomic regions controlling agronomic performance (yield and 26 yield-related traits), disease resistance, and grain quality traits. From phenotypic evaluation, we found large genetic variation among the 35 traits and recommended five lines having a high yield, better quality, and multiple disease resistance for direct use in a breeding program. From a GWAS, we identified a total of 243 significant marker-trait associations (MTAs) for 35 traits that explained up to 25% of the phenotypic variance. Of these, 120 MTAs have not been reported in the literature and are potentially novel MTAs. In silico gene annotation analysis identified 116 MTAs within genes and of which, 21 MTAs were annotated as a missense variant. Furthermore, we were able to identify 23 co-located multi-trait MTAs that were also phenotypically correlated to each other, showing the possibility of simultaneous improvement of these traits. Additionally, most of the co-located MTAs were within genes. We have provided genomic fingerprinting for significant markers with favorable and unfavorable alleles in the diverse set of lines for developing elite breeding lines from useful trait-integration. The results from this study provided a further understanding of genetically complex traits and would facilitate the use of diverse wheat accessions for improving multiple traits in an elite wheat breeding program.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Sibéria
16.
J Appl Genet ; 60(3-4): 283-289, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414379

RESUMO

Recurrent selection and intercrossing between best of the best parents in each generation of breeding cycle resulted in a narrower genetic diversity in elite wheat (Triticum aestivum L.) germplasm. Therefore, we investigated diverse source of 143 synthetic and bread wheat accessions for identifying potentially rich genetic resources for improving the genetic diversity in wheat. This study identified 47,526 genotyping-by-sequencing-derived SNP markers that were nearly evenly distributed across three genomes of wheat. The population structure analysis identified three distinct clusters (Japan synthetics, CIMMYT synthetics, and bread wheat) of wheat genotypes on the basis of type and geographical origin of wheat accessions. Population differentiation using analysis of molecular variance indicated 21% of the total genetic variance among subgroups and the remainder within subgroups. This study also identified that the Japan synthetic group was the most divergent group compared with other subgroups. The genetic diversity comparisons between synthetic and bread wheat lines showed that the gene diversity of synthetic wheat was 33% higher than bread wheat accessions, indicating the potential use of these lines for broadening the genetic diversity of modern wheat cultivars. The results from this study will be helpful in further understanding genomic features of wheat and facilitate their use in wheat breeding programs.


Assuntos
Variação Genética , Genética Populacional , Triticum/genética , Pão , Cruzamento , Mapeamento Cromossômico , Genoma de Planta/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Sibéria , Triticum/crescimento & desenvolvimento
17.
Crop Prot ; 121: 7-10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31274944

RESUMO

Climate change is leading to increased occurrence of and yield losses to wheat diseases. Managing these diseases by introducing new, effective and diverse resistance genes into cultivars represents an important component of sustainable wheat production. In 2016 and 2017 a set of primary hexaploid synthetic wheat was studied under high disease pressure: powdery mildew, leaf and stem rust in Omsk; Septoria tritici and S. nodorum in Moscow. A total of 28 synthetics (19 CIMMYT synthetics and 9 Japanese synthetics) were selected as having combined resistance to at least two diseases in both years of testing. Two synthetics (entries 13 and 18) originating from crosses between winter durum wheat Ukrainka odesskaya-1530.94 and various Aegilopes taushii accessions, and four synthetics (entries 20, 21, 23 and 24) from cross between Canadian durum wheat Langdon and Ae. taushii were resistant to all four pathogens. Pathological and molecular markers evaluation of resistance suggests presence of new genes and diverse types of resistance. The novel genetic sources of disease resistance identified in this study can be successfully utilized in wheat breeding.

18.
PLoS One ; 14(7): e0219432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318895

RESUMO

The study was conducted to determine the effects of genotype (G), environment (E), their interaction (GEI) and genetic gain on yield and grain quality traits in Turkish spring wheat cultivars released between 1964 and 2010. We conducted a multi-environment trial at three testing locations: Adana, Adapazari, and Izmir, during the 2009, 2011 and 2013 cropping seasons and tested 35 cultivars released by the respective breeding programs. Allelic variations of high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) and 1B/1R translocation was also determined and evaluated in all cultivars. Comparing yield across three locations, Adana (6416 kg ha-1) yield was relatively higher than in Izmir (5887 kg ha-1) and Adapazari (5205 kg ha-1) (P<0.001). Overall, GY was influenced by the varieties, testing location and breeding programs (P<0.001). Cultivars from Izmir breeding program performed relatively better (6174 kg ha-1) than those from Adana (5996 kg ha-1) and Adapazari (5351 kg ha-1) (<0.001). We recommend Ziyabey-98, Menemen, and Basribey-95, for stable grain yield in spring wheat production across the studied regions because of their wide adaptability, and Pamukova-97 for future breeding to improve grain quality parameters. We found three breeding programs have successfully increased the grain yield and quality traits for 46 years. As a group, cultivars released after 2000 had the highest yield indicating breeding progress. Genetic gain for GY was 30.9 kg ha-1 per year from 1964 with annual increase compared to the yield of older cultivar Akova B-2 (4102 kg ha-1) which constitutes a 0.75% rate of genetic gain. Improvement in grain quality was related to change in protein composition rather than an increase in protein content whereas yield improvement seems to mainly be related to increases in test weight and 1000 kernel weight. High molecular weight glutenin subunit (HMW-GS) 5+10 showed an increase in frequency whereas 2+12 showed a decrease over the breeding period.


Assuntos
Grão Comestível/genética , Interação Gene-Ambiente , Característica Quantitativa Herdável , Triticum/genética , Análise de Variância , Frequência do Gene/genética , Genótipo , Glutens/genética , Peso Molecular , Melhoramento Vegetal , Subunidades Proteicas/genética , Análise de Regressão
19.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357467

RESUMO

Genetic resistance against biotic stress is a major goal in many wheat breeding programs. However, modern wheat cultivars have a limited genetic variation for disease and pest resistance and there is always a possibility of the evolution of new diseases and pests to overcome previously identified resistance genes. A total of 125 synthetic hexaploid wheats (SHWs; 2n = 6x = 42, AABBDD, Triticum aestivum L.) were characterized for resistance to fungal pathogens that cause wheat rusts (leaf; Puccinia triticina, stem; P. graminis f.sp. tritici, and stripe; P. striiformis f.sp. tritici) and crown rot (Fusarium spp.); cereal cyst nematode (Heterodera spp.); and Hessian fly (Mayetiola destructor). A wide range of genetic variation was observed among SHWs for multiple (two to five) biotic stresses and 17 SHWs that were resistant to more than two stresses. The genomic regions and potential candidate genes conferring resistance to these biotic stresses were identified from a genome-wide association study (GWAS). This GWAS study identified 124 significant marker-trait associations (MTAs) for multiple biotic stresses and 33 of these were found within genes. Furthermore, 16 of the 33 MTAs present within genes had annotations suggesting their potential role in disease resistance. These results will be valuable for pyramiding novel genes/genomic regions conferring resistance to multiple biotic stresses from SHWs into elite bread wheat cultivars and providing further insights on a wide range of stress resistance in wheat.


Assuntos
Adaptação Biológica/genética , Estudo de Associação Genômica Ampla , Poliploidia , Estresse Fisiológico/genética , Triticum/fisiologia , Biologia Computacional/métodos , Resistência à Doença/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Patógeno/genética , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável
20.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347689

RESUMO

Synthetic hexaploid wheat (SHW; Triticum durum L. × Aegilops tauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals.


Assuntos
Grão Comestível/genética , Minerais/análise , Locos de Características Quantitativas , Triticum/genética , Grão Comestível/química , Minerais/metabolismo , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...